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We discuss intermittency effects in the distribution of scalar passive impurities 
within fully developed hydrodynamic turbulence. It is shown that the observable 
stronger intermittency effects in the distribution of passive impurities with 
respect to that for the energy dissipation rate can naturally be explained in the 
framework of composite random cascade models. We discuss doubly random 
bounded and unbounded log-normal models, the doubly random /~-model, 
and the two-scale Cantor set approximation. Then the problem of mutual 
correlations is discussed. The various results are compared with experiments. 

KEY WORDS: Intermittency effects in the distribution of passive impurities; 
composite random cascades; multifractal structure of distribution for passive 
impurities. 

1. I N T R O D U C T I O N  

The turbulent t ranspor t  of passive impurities is a fundamental  problem in 
the study of fluid turbulence. It also plays an impor tan t  role in various 
practical applications (see, e.g., refs. 1-3). In the case of a steady-state 
incompressible fluid turbulence, the scaling behavior  of  the different 
structure functions for passive impurities is in the first approximat ion  
determined by the O b u k h o v - C o r r s i n  theory. (4'5) However,  fluctuations in 
the local energy transfer rate and turbulent diffusion cause deviations from 
the O b u k h o v - C o r r s i n  law called intermittency effects. At first sight the 
intermittency effects in the distribution of passive impurities should 
coincide with that  of  their velocity counterparts ,  since in the main 
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approximation the general scaling dependences are the same for the 
turbulent viscous and diffusive dynamics, but it has experimentally been 
established (see, e.g., refs. 6-9) and references therein) that the intermittency 
effects in the distribution of passive impurities appear to be stronger than 
that for the energy dissipation rate. We show in this paper that this 
experimental fact can naturally be explained in the framework of the 
composite random cascade models. We consider, in particular, the doubly 
random/~-model and doubly random bounded and unbounded log-normal 
models. Then we show how the necessary correlations can be taken into 
account. The results for the various theories are compared and some direct 
experimental consequences from the composite random nature of cascades 
are discussed. 

2. O B U K H O V - C O R R S I N  T H E O R Y  

For the sake of convenience we reproduce briefly the general outline 
of the Obukhov Corrsin theory/1 5) We restrict ourselves below to the 
inertial range L >> t >> l, (where L and l, are the external and internal scales 
of turbulence, respectively). As is well known, (1 3) the effects of molecular 
diffusivity can be neglected in this range and the turbulent transport in an 
incomprehensible fluid is given by 

d0 
~--7+ (vA)O = 0 (1) 

where v(r, t) is a random hydrodynamic velocity and 0(r, t) is the concen- 
tration of passive impurities. The same equation (1) describes the evolution 
of temperature disturbances. In what follows the turbulent pulsations of the 
velocities and concentrations are always understood in the relative sense, 
v ( R  + r, t) - v(R, t) and 0(R + r, t) - 0(R, t). 

The consecutive relay turbulent cascade in the inertial range conserves 
the mean flow, 

~ 02(r ) /~ ( r )  ~ v ( r )  02 ( r ) / r  (2) 

Using the Kolmogorov expression for the velocity fluctuations (l'2) 

/)(F) ~' gl/3rl/3 (3)  

where g is the mean energy dissipation rate per unit mass, one obtains (4"5~ 

0(?') ~ N1/2F1/3/gl/6 (4) 
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3. 1 3 - M O D E L  

We begin with the simplest approximations and then successively 
complicate the problem. We first illustrate the general idea of the paper 
with the use of the homogeneous fl-model. (1~ It is supposed that the relay 
turbulent cascade contracts a distribution of passive impurities and the 
flow N in Eq. (2) curdles in the regions filling only partially the overall 
physical spece. Let the manifold corresponding to the spatial points where 
the N flow is not equal to zero form a homogeneous fractal set with 
Hausdorff dimension Of,  N < O (here D is the effective spatial dimension in 
a physical experiment). Then the balance equation (2) should be replaced 
by 

N ~  P:;u(r) vj;u (r) O~,N(r)/r (5) 

where P};u(r) is the probability that an arbitrarily chosen point of a fluid 
volume with size Mr ( L > r > l , )  belongs to the N fractal, and the corre- 
sponding subscripts in Vf, u(r) and 0j;x(r) mean that the velocities and 
concentrations are taken on the N fractal. The probability Pf, u(r) has the 
form 

P:; u (r) ~ (r/L) D - Dj;N (6) 

On the other hand, the centers of Kolmogorov eddies build up the 
fractal structure as well. ~1~ Let Dy,~ < D be its Hausdorff dimension. Then 
the corresponding balance for the energy transfer rate is given by 

g ~  Pf,~(r) v~,~(r)/r (7) 

pf ,~(r)~ (r/L) D Df~ (8) 

As is seen from Eqs. (1) and (2), the N flow is nonzero only in the 
spatial regions where v ( r )~  O, i.e., where the e flow is nonzero. For this 
reason the probability P/;N(r) can also be presented in the form 

Pf, N(r) = Pf,~(r) Pj;~/N (r) (9) 

where Pf,~(r) is the probability that a point of a fluid volume with size ,,~r 
belongs to,e fractal and Pf,~/N (r) is the conditional probability that a point 
of the e fractal belongs simultaneously to the N fractal. Comparing Eqs. (6), 
(8) and (9), one obtains 

Pf,~/N (r) ~ (r/L ) nj;~- Dj;N ( lO) 

This means that the following inequality should hold: 

Df~>~DLN (11) 
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i.e., the N fractal should be embedded into the e fractal (or be a subfractal 
of the e fractal). Physically, one can say that the curdling of the N fractal 
is stronger than that of the ~ fractal, or the spatial distribution of the N 
field is more singular than that of the e field. 

The different moments ( N  q) are determined according to 

( N q ) ~ Pj;N(r)[Vf, N(r) O~,N(r)/r] q ~ NqP},~v q (r) ~ Nq(L/r) (q I)(D--Dj, N) 

(!2) 

Defining the exponents #q,N by 

( N q )  ~Nq(L / r )  ~q,N (13) 

We obtain from Eqs. (12) and (13) the relationship 

#q,N = ( D -  Ds:N)(q- 1) (14) 

The analogous exponents for the e fluctuations are ~1~ 

# q , e  = ( D -  Di,~)(q- 1) (15) 

Taking into account Eqs. (11), (14), and (15), one obtains immediately the 
inequality 

#q,N>~#4,e (q>~l) (16) 

i.e., the fluctuations of the N field should be stronger than those of the e 
field. 

The corresponding moments for the velocities and concentrations are 
determined by 

(V r ) ~ Pi, (r) i f (r)  
gq/3 rq/3 (L/r)"q,~ 

gq/3rq/3(L/r)(q/3- 1)(o Df,~) (17a) 

( Oqr ) ~ ~ r q/3 

~ Pf, N(r) O~,sv(r) 
~q/2 

P L  (r) ~ rq/3 p~,Nq/X(r) q/6 

~q/2 / ] , \ (q/2--1)(D DfN ) (q/6)(D Df,~) 
- ~  rq/3 ~ r ) (17b) 
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This gives that #q.O >~ #q.v (q >>-2), i.e., the fluctuations of concentrations 
should be stronger than those of velocities. 

The same suggestions can be generalized to the random fl-model. (11) 
Supposing that the representation of the random curdling factors for the N 
cascades are in the form of the product of two independent curdling factors 
analogously to Eq. (9), we can easily obtain for the consecutive contractions 
of scales at two times that the corresponding exponents #q,N defined by 
Eq. (13) are in this doubly random fi-model given by (11) 

#q ,N=lOg2( ,~  1 q)  + l o g 2 ( f l  l - q )  

~- ]Aq, A -1- #q,e 

(/~1 -- q )  = fflmax 
flmin 

( 21 q)=f2, .... 
amin 

d)o PA(2)21 q 

(18) 

(19) 

1 >/flmax > flmin > 2 D, 1 > 2ma x >/~min > 2 - D 

(20) 

(21) 

where the probability P~(fl) describes the distribution of curdling factors 
for the e fractals with respect to overall physical space, while the probability 
PA(2) corresponds to the distribution of the relative curdling factors for the 
N fractals with respect to the e fractals. It is easy to see that inequality (16) 
is satisfied in this case as well. 

4. L O G - N O R M A L  M O D E L  

Experiments(9.12) (see also Fig. 5 in ref. 13) show that in the multifractal 
picture the inequalities 

N D~ >~ D q (q/> 0) (22) 

hold at least up to q ~< 10. Although the fl-model yields the natural explana- 
tion of this fact, the above argument is not quite general. 

Let us consider the composite representation of N flow in the form 

Nr = ATr~e~'r~ (23) 

with the exponents 7~ > 0 and 7~ > 0. The multiplicative character of the 
coupling of N fluctuations with e fluctuations is rather evident from Eqs. (1) 
and (2), since the fluctuations in er and the passive nature of turbulent 
transport should cause the corresponding fluctuations in Nr. 
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Supposing for simplicity that both Ar and er are mutually independent 
and described by unbounded log-normal distributions with variances 
~2 = ;t ln(L/r) and o-~ 2 = #  ln(L/r)  (cf. refs. 14 and 15; the more general 
model in the framework of unbounded log-normal distributions has been 
considered by Van Atta(~6)), one obtains 

2 # 
gq, U = -~ qTa(qT~. -- 1) + ~ qT~(qT~ -- 1) (24) 

Since the scaling corrections to the mean flow <Nr) should be absent, the 
various parameters are related by the restriction 

]A1,N = O (25) 

This condition ensures also the standard multifractal relationship between 
I~q,N and D u [see Eq. (33) below]. As can easily be checked, there is a 
range of parameters where 2 > 0, ~ > 0, 7~. > 1, 0 < 7, < 1, but ]Aq, N < ]Aq, e 

(q ~> 1), i.e., the inequalities (22) are violated. On the other hand, the N 
flow is equal to zero everywhere at all spatial points where the ~ flow is 
equal to zero. 

The combination of the inequalities (22) with the composite represen- 
tation (23) (if possible) may yield interesting physical information related 
to the internal structure of the N flow and the mutual correlations of e and 
N multifractals. We first consider the simplest doubly random cascades 

N r = A r e  r (26) 

which can be considered as the counterpart of the fl-models discussed in 
the previous section. In the unbounded log-normal model the doubly 
random representation (26) ensures immediately the inequalities (22) [see 
Eq. (24)]. 

In the case of the bounded log-normal model (17~ we can use the 
representation 

P u  = P A  P ~  (27) 

where each of the probabilities PA and P~ is described by the equations 

p ( y r ) = A r e x p (  [ l n ( y r / f ) + b r a 2 ] 2 )  
2a~ (28) 

f ymax, r <yq) = dy~P(yr ) y  q (29) 
Ymin, r 

( y O > =  1, ( y . >  = 37 (30) 

tr2=#~ln(L/r) ,  Y . . . .  r/37=c1(L/r) ~, Ymi.,r/37=c2(L/r) ~ (31) 
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with the constants el >0,  e 2 > 0  and the functions #r and br weakly 
dependent on ln(L/r). As has been argued in ref. 17, a bounded log-normal 
distribution can be characterized by the triple sets of numbers cq, c~2, and #2. 

Having in mind a future application to the experiments by Prasad 
et aL, (9) we describe some results for the case with el,-A = 0.115, e2,A = 0.31, 
and #2,A = 0.07 as a particular example. Figure 1 shows that the asymptotic 
scaling behaviors for the moments (A q ) are fulfilled with a good accuracy 
despite the relative smallness of the logarithmic range in the corresponding 
integrals (29). Taking the values ~1,~ = 0.485, c~2,~ = 0.74, and #2,~--0.25 for 
the distribution of e fluctuations, we present also the results for C~ v and i% 
(see Figs. 2 and 3) determined by 

( N q )  = CN(L/r )  ~'u = C A C q(L/r) m,~+u~.~ (32) 

(the corresponding plots for Cq and/~q,~ are given in Figs. 4 and 5 in ref. 17). 
In order to describe the statistical characteristics of fluctuations in 

terms of the generalized Renyi dimensions, it is useful to define them for 
the factorized A ~ model (26) according to 

# q , N = ( D - - D N ) ( q - - 1 ) ,  I t q , ~ = ( D - D q ) ( q - 1 ) ,  

Then the equality 

gives 

#q,A = DA(q -- 1) 

(33) 

] ~ q , N  = ~ q , A  ~ -  ~ q , e  (34) 

A ~ N ( 3 5 )  Dq -=Dq-Dq 
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The asymptotic scaling behavior of moments  ( A 7 )  for the bounded log-normal 
distribution with e],A = 0.115, ~2,A =0.31, and #2,A = 0.07. 
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Fig. 2. The constant Cq u versus q for the factorized distribution (27) with the product of two 
bounded log-normal probabilities with parameters cq, a = 0.115, 22,A = 0.31, #2,A = 0.07 and 
el.~ = 0.485, c~2.~. = 0.74, /~2.~ =0.25, respectively [see Eq. (32)]. 
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Fig. 3. The exponent ,Uq versus q in the case of e fluctuations (dashed line) for the bounded 
log-normal distribution with e1.~=0.485, ~2,~=0.74, and #2,~:=0.25 and in the case of N 
fluctuations (solid line) for the same factorized distribution as in Fig. 2. 
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Analogously to the case of e fluctuations, (12) the experimental data for 
the one-dimensional cuts ( D =  1) of N fluctuations/9) can empirically be 
described with an accuracy ~ 10 % by the two-scale Cantor set dimensions, 

1 
u = 1og2(0.76 q + 0.24 q) (36) Dq (1 - q )  

The fit for the doubly random fi-model [see Eqs. (18)-(21)]  is 
performed as in refs. 11 and 17 and gives the exponents 

/%N = 1og2[0.6 • 2 0 115(1-q) + 0.4] 

+ log2 [0.47 X 2 0.485(1- q)+ 0.53 ] 

~" ~q,A -~ ]lq, e (37) 

Figures 4 and 5 summarize the results for various theories. Although 
the agreement between the experimental data and the doubly random 
fl-model can be improved for positive q > 0 by a more flexible choice of 
probab i l i t i e s  PA()C) and P~(fl) in Eqs. (18)-(21), the principal inequality 
D ~> D u - oo breaks the correspondence for negative values of q < 0 (see Fig. 4). 
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Fig. 4. The generalized Renyi dimension Dq v e r s u s  q for various models of intermittency. 
(1) The factorized A-~ model (26) with the product of two bounded log-normal distributions 
with parameters el,A=0.115, e2,A=0.31, ~2,~=0.07 and cq,~=0.485, c~2,~=0.74 , /12,~=0.25 
(solid line); (2) two-scale Cantor set approximation (36) (dashed line); (3) doubly random 
fl-model (37). 
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Fig. 5. The generalized Renyi dimension D o versus q for the ~ fluctuations (dashed lines) and 
for the N fluctuations (solid lines) in the case of (a) the factorized A-e model with the product 
of two bounded log-normal distributions with the same parameters as in Fig. 4 and (b) in the 
case of random and doubly random fl-models [see Eq. (37)]. 

Moreover, the mutual relationships for the ~ and N fluctuations cannot 
even qualitatively be satisfied in the random fl-models for q < 0 (see Fig. 5). 

The more singular spatial distribution of the N field and the stronger 
character of concentration fluctuations may be described not only in terms 
of inequalities, Dq/> Du N (q ~> 0) and N >~ #q ,~/~q (q >~ ! ), but also with the use 
of the so-called f - e  curves (18 2o) determined parametrically by 

(q - 1)Dq = qc~(q) - f(o~(q)) (38) 

d 
~(q) =~qq [ ( q -  1)Dq] (39) 

The function f (e )  characterizes the fractal dimensions of spatial regions, 
where the local fields behave as ( r /L)  ~-  D at r ~ L (a more general definition 
can be found in ref. 21). The comparative f-c~ curves for the e and N 
fluctuations are shown in Fig. 6. It is worth noting that f - ~  curves also can 
be directly measured experimentally. (= 25) 

The composite nature of N cascades in the representation (26) can be 
expressed in terms of the inequality 

D~ - DN ~> D~ -- DN (q2/> ql ~> 0) (40) 
q 2  q ~  q l  q l  

A in Eq. (35) increase with since the relative generalized dimensions Dq 

increasing q [their behavior is analogous to that of ( D - D q )  or ( D - D ~ )  
with Dq and D J  decreasing with increase of q (see Fig. 5)]. The restriction 
(40) is more severe than inequality (22). 



599 

1.0 

0.4 

0.8 

0.6 

0.2 

0.0 
0.2 2.2 0.6 1.0 1.4 1.8 

a 

M u l t i f r a c t a l  S t r u c t u r e  of Turbu lence .  II 

Fig. 6. The f-c~ curves for e fluctuations (dashed line) and for N fluctuations (solid line) in 
the case of two-scale Cantor  set approximations. 

5. CORRELATED A-~ MODEL.  C O N C L U S I O N  

The representation (23) corresponds to the following physical situation. 
It is supposed that a part of the renormalized turbulent diffusive dynamics 
lags from the initial dynamics of e flow and becomes more or less independent 
of e. This is due to the causality principle and the fact that the renormalized 
turbulent diffusion dynamics is determined by the retarded velocity 
correlators. The superimposition of the lagging and initial dynamics is 
simulated by the composite representation (23). The doubly random 
approximation oversimplifies this process and generally A r and er should 
partially be correlated. For definiteness we restrict ourselves to the 
bounded log-normal distributions. 

The direct generalization of the Van Atta (16~ model to A-~ correlations 
in the form (26) is impossible, since A e correlations would immediately 
cause unphysical scaling corrections to the averaged flow (Nr)  [cf. 
Eq. (25)]. One way to overcome this difficulty consists in the more 
complicated composite representation for the variable At: 

Ar= fl Air ( 4 1 )  
/ =  1 

where the mutual correlations of the random variables Air and e r are 
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introduced analogously to the Van Atta (16) model and are restricted by the 
condition 

(Nr )  = N (42) 

The various free parameters are then fitted with respect to the experimental 
data. 

One could, however, use the fact that Ar is a hidden auxiliary variable 
and replace Eq. (26) by 

Nr=A~er (43) 

with the correlated A-e parts and the exponent 7 fixed by Eq. (25). From 
a pragmatic point of view such a representation is more convenient for 
comparison with experiment, since the number of fitting parameters is 
much less. The choice of the form ATrer rather than Are~ is again dictated 
by inequality (22). The mutual probability distribution function is assumed 
to be of the form (16"25) 

H(Ar,~r)= Ar exp{ 1 [[ln(Ar/A)+bA~2A, r]2 
Are ~ ( 1 - p ~  A) 2a~,r 

[In(At/A) + bA a~,r] [ln(er/g) + b~ a~,r] 
- -  P e A  

~A,rGe,  r 

+ 2a~, r j j  (44) 

The limits of integration and other parameters are determined analogously 
to Eqs. (28) (31). 

The mutual correlations are characterized by the cross-exponents 
M(q, p) defined by the moments 

(eqN p) oc gqNP(L/r) M~ x(q, pt (45) 

(eqAP,. ) oc gqAP(L/r) M~ a(q,p) (46) 

Me N(q, p)= M~ A(q + P, 7P) (47) 

The exponents M(q, p) are related to ~(q, p) used in ref. 25 by 

M(q, p)= ( q + p -  1 )D-v(q ,  p) (48) 

The fitting parameters in Eqs. (43) and (44) are determined by the 
relatively low values of q and p [-see Eqs. (50) below]. For this reason we 
illustrate the fitting procedure using the unbounded cross-exponents (8' ~6,2s): 

M~_A(q,p),,~ #~q(q-1) UAP(p--1) ]-p~ Aqp(u~l~A) '/2 (49) 
2 ~ 2 
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where the fitting parameters in Eqs. (43)-(47) are determined by the 
conditions 

Me N(2, 0) =lA2,e; M e N(0, 2)=lA2, N (50a) 

M~_N(1, 1) = Pc N(IA2,elA2,N) 1/2 (SOb) 

M~ N(1, 0)=0; Me N(0, 1)=0 (50c) 

with the known experimental values on the rbs of Eqs. (50). This gives 

(lAe ~ lA2, e, lAN ~ IA2, N) 

2 [ # e -  JOe_N(IAglAN) 1/2 ] ~=~+ (51) 
tAN - lA~: 

lAA = (IAN -- lA~)/7 (52) 

, _ ,  (~ , /2  (53) 
Pe A -  "2 \ l A e /  

while the boundary exponents [-see Eq. (31)] are determined by 

~ 1 , ~ = D - D ~ ;  c~2,~=D5 ~ - D  (54) 

~I,A = ( D 2  --DN)/~?; "2,A = (DN-~ - -D~-~) /2  (55) 

We should, however, especially stress that the expressions (49) and 
(51)-(53) are valid only for the unbounded correlated log-normal distribu- 
tions and in the bounded model they can be used only for approximate 
preliminary estimates. Even if the relatively weak dependences on ln(L/r)  in 
bA,r, lAA,r, b .... lA .... and P~-A,r are neglected (cf. ref. 17 and Section 4), their 
values must be fitted numerically by the conditions (50) and may generally 
be different from the estimates given by Eqs. (49), and (51)-(53). Thus, the 
unbounded estimates should at least be numerically checked by the 
fulfilment of conditions (50). Our calculations show that they are not 
always satisfactory. 

If p~ A is equal to zero, then this model is reduced to the doubly 
N random representation (26) and (27). Both models describe Dq c u r v e s  

equally well, but their dependences on the g-N mutual correlations are 
different. For the doubly random model (26), Pc-N cannot be considered as 
an independent experimental parameter and one obtains p~ N ~ (lAJlAN) 1/2 
[cf. Eq. (51)]. This difference would show up both in the cross-moments 
(45) and in the weighted concentration averages [see Eq. (4)]: 

q/2q/3 ~q/2 (z)M~_N(-q/'6, q/2) / N ~  r \ 
<Oqr>--~ ~r/6 ) - - T r  q/3 ( 5 6 )  
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The corresponding plots for the exponent 

[q=q/3- M~ N(--q/6, q/2)=q/3-- M~ A(q/3, Tq/2) (57) 

are shown in Fig. 7. The dot-dashed curve 3 corresponds to the doubly 
random, bounded log-normal representation (26), (27) with the same 
parameters as used in Section 4 (see also Fig. 4). This curve appears to be 
in a rather good correlation with the experimental data of ref. 8. Curves 1 
and 2 illustrate the influence of the mutual correlations in the A~-~ model 
(43). The solid curve 1 reproduces reasonably welt the data of ref. 25. 

Below we give a brief discussion of the experimental situation and 
other problems. The criterion for the composite representation of the N 
flow in the form (43) is also expressed by inequality (40). The experimental 
data (9'25) (see also Fig. 5 in ref. 13) support this idea at least up to q~< 10. 
The results for the higher moments are more ambiguous. In refs. 9 and 12 
it has, in particular, been obtained that #2x=0.38_+0.08 and #~= 
0.25___0.05 (or D~V=0.62+0.08 and D~=0.75+0.05), while DN~ 
0.40+0.10 and D~ ~0.51 +0.10. We have chosen in our calculations the 
values N N e e #2 = 0.32, D,~ = 0.4 and #2 = 0.25, D~ = 0.51, which lie within the 
experimental errors. However, the change of/~N = 0.32 to /~N = 0.38 would 
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Fig. 7. The  exponen t  ~q [see Eq, (57)]  versus q. (1) Solid line: the correlated AY-e model  (43) 
with cq,a = 0.033, c~2, A = 0.044, #r.a = 0.095, 7 = 7.0, and  P~-A = --0.5 (or p~, N = 0.39); (2) dashed  
line: cq.a = 0.23, c~2, A =0 .31 ,  gr, A =0.047,  7 = 1, and  p,  A =-0 (or p,  N = 0.95); (3) do t -dashed  
line: e l .A=0.115 ,  ~2,A=0.31,  # r , a=0 .0 95 ,  7 =  1, and  p~ A = 0  (or p~ N=0.94) .  In all cases 
~1,~=0.485, e2.~=0.74, and  #r ,~=0.25.  These  paramete rs  (for all curves)  cor respond  to 
/~2.N = 0.32 and  g2,~ = 0.25. 
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cause the violation of the criterion (40) and rule out the composite nature 
of the N cascades. The recent estimate D~  =0.12_+0.08 suggested by 
Meneveau and Sreenivasan (24) makes the situation even more confused. 

If the inequalities (22) are fulfilled but the criterion (40) is violated, 
then N flow should be treated as a unit indispersible process. In the last 
case Dq ~ could be described by the corresponding nonfactorized, bounded 
log-normal distribution (17) with the e -N correlations introduced by anal- 
ogy with ref. 16 (see also ref. 25), i.e., one should use the direct mutual 
probability H(~r, Nr) analogously to Eq. (44) rather than composite 
representations of the type of (23). It is worth noting that the generalized 
Renyi dimensions for the nonfactorized, bounded log-normal distribution 
(28)-(31) with the parameters ~XI=~I,A'dt-(XI,e, ~X2=(X2, A-[-O~2, e, and 
#2 = #2,A + #2,~ would practically merge with the corresponding curve for 
the factorized distribution (27) in Fig. 4 (even closer than the dashed line 
in this figure). Thus, the criterion (40) is really essential from the 
experimental point of view. 

The mutual e -N correlations have been studied extensively in ref. 25. 
These authors investigated the surrogate flows 

N'  oc (ST/St) 2, E' ~ (Sv/Ot) 2 (58) 

and found very low correlation coefficient p,, N,= 0.13. The value p~ N = 0.3 
obtained from the temperature structure functions is probably more 
adequate, since the intermittency effects in the temperature structure 
functions are determined by the real e and N flows rather than e' and N'. 
The other specific feature of these experiments is the strong anisotropy of 
the turbulence. The correlation for e' and the squared vorticity, 

~Or 2 = [-rot v(r, t ) ]  2 

was found to be equal to p,, ~o~ = 0.3, while for isotropic conditions this 
value should be expected to be close to unity, since 

(rot v) 2 = e/v 

where the bar means the averaging over the solid angle and v is the 
molecular viscosity (see, e.g., ref. 2). The early value p, N = 0.5 reported in 
refs. 26 and 27, interpreted within the framework of the composite 
representation, might indicate a relatively low correlation of A-e parts 
because the value 0.5 does not strongly differ from the value p~ u = 
(#J#N) 1/2 obtained in the doubly random N cascades. All experiments give, 
however, unambiguous evidence on the necessity of A-e  correlations [if 
criterion (40) is fulfilled]. 
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It is worth noting that the composite representation for N flow (if 
possible) is more informative than the e-N correlations in the form of ref. 16, 
since it sheds additional light on the internal structure of N cascades. Thus, 
despite the evident phenomenology, such a composite representation may 
appear useful in future investigations. 

Finally, we note that inequalities analogous to (22) can also be written 
for the moments of the high-order spatial derivatives of the same quantity, 
since a spatial differentiation is a contraction operation. It gives 
immediately the restriction 

D~>~D~ ~ (m<~n,q>~O) (59) 

where m and n correspond to the orders of the differentiation. For this 
reason the distributions of the higher derivatives should be more singular 
than that of the lower ones, while their f-c~ curves should encompass the 
corresponding f - e  curves of the lower derivatives (cf. Figs. 5a and 6). This 
conclusion is in good agreement with the experimental observations on the 
moments of the spatial derivatives of the velocities. ~2s~ It is of interest to 
check whether a stronger restriction analogous to Eq. (37) does or does not 
hold in this case and to investigate also the moments of the spatial 
derivatives of the temperature or concentration. 
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